Grammatical Evolution with Bidirectional Representation

نویسندگان

  • Jirí Kubalík
  • Jan Koutník
  • Léon J. M. Rothkrantz
چکیده

Grammatical evolution is an evolutionary algorithm designed to evolve programs in any language. Grammatical evolution operates on binary strings and the mapping of the genotype onto the phenotype (the tree representation of the programs) is provided through the grammar described in the form of production rules. The program trees are constructed in a pre-order fashion, which means that as the genome is traversed first the left most branch of the tree is completed then the second from the left one etc. Once two individuals are crossed over by means of simple one-point crossover the tail parts of the chromosomes (originally encoding the structures on the right side of the program tree) may map on different program structures within the new context. Here we present a bidirectional representation which helps to equalize the survival rate of both the program structures appearing on the left and right side of the program parse tree.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

mGGA: The meta-Grammar Genetic Algorithm

A novel Grammatical Genetic Algorithm, the meta-Grammar Genetic Algorithm (mGGA) is presented. The mGGA borrows a grammatical representation and the ideas of modularity and reuse from Genetic Programming, and in particular an evolvable grammar representation from Grammatical Evolution by Grammatical Evolution. We demonstrate its application to a number of benchmark problems where significant pe...

متن کامل

On the Locality of Grammatical Evolution

It is well known that using high-locality representations is important for efficient evolutionary search. This paper investigates the locality of the genotype-phenotype mapping (representation) used in grammatical evolution (GE). The results show that the representation used in GE has problems with locality as many neighboring genotypes do not correspond to neighboring phenotypes. Experiments w...

متن کامل

From Grammars to Parameters: Automatic Iterated Greedy Design for the Permutation Flow-Shop Problem with Weighted Tardiness

Recent advances in automatic algorithm configuration have made it possible to configure very flexible algorithmic frameworks in order to fine-tune them for particular problems. This is often done by the use of automatic methods to set the values of algorithm parameters. A rather different approach uses grammatical evolution, where the possible algorithms are implicitly defined by a context-free...

متن کامل

Solving Knapsack Problems with Attribute Grammars

We present a work in progress describing attribute grammar approaches to Grammatical Evolution, which allow us to encode context-sensitive and semantic information. Performance of the different grammars adopted are directly compared with a more traditional GA representation on five instances of an NP-hard knapsack problem. The results presented are encouraging, demonstrating that Grammatical Ev...

متن کامل

Examining Mutation Landscapes in Grammar Based Genetic Programming

Representation is a very important component of any evolutionary algorithm. Changing the representation can cause an algorithm to perform very differently. Such a change can have an effect that is difficult to understand. This paper examines what happens to the grammatical evolution algorithm when replacing the commonly used context-free grammar representation with a tree-adjunct grammar repres...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003